10.2 Properties of PDF and CDF for Continuous Random Variables

10.18. The pdf f_{X} is determined only almost everywhere ${ }^{42}$. That is, given a pdf f for a random variable X, if we construct a function g by changing the function f at a countable number of points ${ }^{43}$, then g can also serve as a pdf for X.

This is because f_{X} is defined via its integration property. Changing the value of a function at a few points does not change its area under the curve (from a to b)

10.19. The cdf of any kind of random variable X is defined as

$$
F_{X}(x)=P[X \leq x] .
$$

Note that even though there are more than one valid pdfs for any given random variable, the cdf is unique. There is only one cdf for each random variable.
10.20. For continuous random variable, the cdf is continuous.
$p d f \rightarrow c d f$ 10.21. For continuous random variable, given the pdf $f_{X}(x)$, we
can find the cdf of X by

$$
\begin{aligned}
& F_{x}(5)=p[x \leqslant 5]=\int_{-\infty} f_{x}(a) d x \\
& t) d t .
\end{aligned}
$$

$c d f \rightarrow p d f$ 10.22. Given the $\operatorname{cdf} F_{X}(x)$, we can find the $\operatorname{pdf} f_{X}(x)$ by
step 1 - If F_{X} is differentiable at x, we will set

$$
\frac{d}{d x} F_{X}(x)=f_{X}(x) .
$$

step 2 - If F_{X} is not differentiable at x, we can set the values of $f_{X}(x)$ to be any value. Usually, the values are selected to give simple expression. (In many cases, they are simply set to 0 .)

[^0]

Example 10.23. For the random variable generated by the rand command in MATLAB or the rand() command in Excel,

$$
\begin{aligned}
F_{x}(x) & =p[x \leqslant x] \\
F_{x}(c) & =p[x \leqslant c]=\int_{-\infty}^{c} f_{x}(x) d x \\
= & \begin{cases}0, & c<0 \\
c, & 0<c \leqslant 1 \\
1, & c>1\end{cases}
\end{aligned}
$$

Example 10.24. Suppose that the lifetime X of a device has the pdf

$$
F_{X}(x)=\left\{\begin{array}{ll}
0, & x<0 \\
\frac{1}{4} x^{2}, & 0 \leq x \leq 2 \\
1, & x>2
\end{array} \quad \xrightarrow{\frac{d}{d x}} f_{x}(x)=\left\{\begin{array}{cc}
0, & x<0 \\
\frac{1}{2} x, & 0<x<2 \\
0, & x>2
\end{array}\right.\right.
$$

Observe that it is differentiable at each point x except at $x=2$. \uparrow
The probability density function is obtained by differentiation of we haven't the cdf which gives

$$
f_{X}(x)= \begin{cases}\frac{1}{2} x, & 0<x<2 \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& \text { checked } \frac{d}{d x} \\
& \text { (} x=0, x=2 \text {. }
\end{aligned}
$$

At $x=2$ where F_{X} has no derivative, it does not matter what points graph of pdf,
values we give to f_{X}. Here, we set it to be 0 . so, we con define the
10.25. In many situations when you are asked to find pdf, it may golf to be be easier to find cdf first and then differentiate it to get pdf.
Exercise 10.26. A point is "picked at random" in the inside of a $\frac{\text { any valve }}{\eta}$ there.
circular disk with radius r. Let the random variable X denote the " "we" chooses
distance from the center of the disk to this point. Find $f_{X}(x)$. "
10.27. Unlike the cf of a discrete random variable, the cdf of a the valve to continuous random variable has no jump and is continuous everywhere.

10.28. $p_{X}(x)=P[X=x]=P[x \leq X \leq x]=\int_{x}^{x} f_{X}(t) d t=0$.

Again, it makes no sense to speak of the probability that X will take on a pre-specified value. This probability is always zero.
10.29. $P[X=a]=P[X=b]=0$. Hence,

$$
P[a<X<b]=P[a \leq X<b]=P[a<X \leq b]=P[a \leq X \leq b]=F_{x}(b)-F_{x}(a)
$$

$$
\int_{a}^{b} f_{x}(x) d x=F_{x}(b)-F_{x}(a)
$$

- The corresponding integrals over an interval are not affected by whether or not the endpoints are included or excluded.
- When we work with continuous random variables, it is usually not necessary to be precise about specifying whether or not a range of numbers includes the endpoints. This is quite differment from the situation we encounter with discrete random variables where it is critical to carefully examine the type of inequality.

$$
\text { a.e. } \infty \text { (2) }
$$

10.30. f_{X} is nonnegative and $\int_{\mathbb{X}} f_{X}(x) d x=1$.

Example 10.31. Random variable X has pdf

$$
f_{X}(x)= \begin{cases}c e^{-2 x}, & x>0 \\ 0, & \text { otherwise }\end{cases}
$$

Find the constant c and sketch the pdf.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f_{x}(x) d x & =\int_{-\infty}^{\infty} \underbrace{f_{x}(x)}_{0} d x+\int_{0}^{\infty} f_{x}(x) d x-e_{0}^{-2 x} d x=\left.c \frac{e^{-2 x}}{-2}\right|_{0} ^{\infty} \\
& =\frac{c}{-2}(0-1)=\frac{c}{2}=1 \Rightarrow c=2
\end{aligned}
$$

Definition 10.32. A continuous random variable is called exponential if its pdf is given by

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x}, & x>0 \\ 0, & x \leq 0\end{cases}
$$

for some $\lambda>0$

Ex.

Theorem 10.33. Any nonnegative ${ }_{44}^{4}$ function that integrates to one is a probability density function (pdf) of some random variable [8, p.139].

[^1]"Rough" Summary
For continuous RV,

10.3 Expectation and Variance

10.34. Expectation: Suppose X is a continuous random variable with probability density function $f_{X}(x)$.

$$
\begin{align*}
\mathbb{E} X & =\int_{-\infty}^{\infty} x f_{X}(x) d x \tag{21}\\
\mathbb{E}[g(X)] & =\int_{-\infty}^{\infty} g(x) f_{X}(x) d x \tag{22}
\end{align*}
$$

In particular,

$$
\begin{aligned}
& \mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x \\
& \operatorname{Var} X=\int_{-\infty}^{\infty}(x-\mathbb{E} X)^{2} f_{X}(x) d x=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2} .
\end{aligned}
$$

Example 10.35. For the random variable generated by the rand command in MATLAB or the rand() command in Excel,

Example 10.36. For the exponential random variable introduced in Definition 10.32 ,

$$
\begin{aligned}
& \begin{array}{l}
f_{x}(\alpha)= \begin{cases}\lambda e^{-\lambda a} & a>0, \\
0, & \text { otherwise. }\end{cases} \\
\underbrace{\infty}_{0} e^{-\lambda a} d x=\lambda \int_{0}^{\infty} x e^{-\lambda x} d a=\left.\lambda\left(-\frac{x}{\lambda} e^{-\lambda x}-\frac{1}{\lambda^{2}} e^{-\lambda x}\right)\right|_{0} ^{\infty}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\lambda & =\text { rate e.g. } \lambda=2 \text { costumes) } \\
E W & =\frac{1}{\lambda}=0.5 \text { hour on average hour }
\end{aligned}
$$

10.37. If we compare other characteristics of discrete and continuous random variables, we find that with discrete random variables, many facts are expressed as sums. With continuous random variables, the corresponding facts are expressed as integrals.
10.38. All of the properties for the expectation and variance of discrete random variables also work for continuous random variables as well:
(a) Intuition/interpretation of the expected value: As $n \rightarrow \infty$, the average of n independent samples of X will approach $\mathbb{E} X$. This observation is known as the "Law of Large Numbers".
(b) For $c \in \mathbb{R}, \mathbb{E}[c]=c$
(c) For constants a, b, we have $\mathbb{E}[a X+b]=a \mathbb{E} X+b$.
(d) $\mathbb{E}\left[\sum_{i=1}^{n} c_{i} g_{i}(X]=\sum_{i=1}^{n} c_{i} \mathbb{E}\left[g_{i}(X)\right]\right.$.
(e) $\operatorname{Var} X=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}$
(f) $\operatorname{Var} X \geq 0$.
(g) $\operatorname{Var} X \leq \mathbb{E}\left[X^{2}\right]$.
(h) $\operatorname{Var}[a X+b]=a^{2} \operatorname{Var} X$.
(i) $\sigma_{a X+b}=|a| \sigma_{X}$.

10.39. Chebyshev's Inequality:

$$
P[|X-\mathbb{E} X| \geq \alpha] \leq \frac{\sigma_{X}^{2}}{\alpha^{2}}
$$

or equivalently

$$
P\left[|X-\mathbb{E} X| \geq n \sigma_{X}\right] \leq \frac{1}{n^{2}}
$$

- This inequality use variance to bound the "tail probability" of a random variable.
- Useful only when $\alpha>\sigma_{X}$

Example 10.40. A circuit is designed to handle a current of 20 mA plus or minus a deviation of less than 5 mA . If the applied current has mean 20 mA and variance $4(\mathrm{~mA})^{2}$, use the Chebyshev inequality to bound the probability that the applied current violates the design parameters.

Let X denote the applied current. Then X is within the design parameters if and only if $|X-20|<5$. To bound the probability that this does not happen, write

$$
P[|X-20| \geq 5] \leq \frac{\operatorname{Var} X}{5^{2}}=\frac{4}{25}=0.16
$$

Hence, the probability of violating the design parameters is at most 16%.
10.41. Interesting applications of expectation:
(a) $f_{X}(x)=\mathbb{E}[\delta(X-x)]$
(b) $P[X \in B]=\mathbb{E}\left[1_{B}(X)\right]$

$$
\begin{aligned}
& \text { of expectation: } \\
& f_{x}(c)=\underbrace{\mathbb{E}[\delta(X-c)]}_{\mathbb{E}[g(x)]} \underbrace{\infty}_{x} g(a) f_{x}(a) d x \\
& g(x)=\delta(x-c) p_{x}(a) \\
& \\
& \\
& =\int_{-\infty}^{\infty} \delta(x-c) f_{x}(x) d x \\
&
\end{aligned}
$$

[^0]: ${ }^{42}$ Lebesgue-a.e, to be exact
 ${ }^{43}$ More specifically, if $g=f$ Lebesgue-a.e., then g is also a pdf for X.

[^1]: ${ }^{44}$ or nonnegative ace.

